 800V AC Switchgear for photovoltaic

1800 V AC Switchgear for Photovoltaic

New trend of photovoltaic installations and where our products are needed

Tested switching capacity at 800 V AC as per IEC60947-3

Design of more competitive photovoltaic plants

Less power losses

PV energy shouldn't be considered any more an alternative source of energy. As it is becoming more cost-competitive, it is now an increasing reality.

One of the main reason for this, is the reduction of installations and maintenance cost. New trend consist in designing photovoltaic distribution network in 800 V AC instead of DC voltages with smaller string inverters close to the photovoltaic panels.

At the same time, the transmission of energy at higher voltages make possible to reduce power losses and the cost of the installation.

By using upper section cables, up to $300 \mathrm{~mm}^{2}$ for NH 1 and NH 3, the voltage drop is reduced. In this way, the tendency in last inverters generation is to transmit at 800 V AC .

- GORLAN SWITCHGEAR RANGE | Pronutec and Telergon
- Pronutec| Incoming
- Telergon |Outgoing

INCOMING

TRIVER+ 800 LV Vertical Fuse Switches of Pronutec for 800 V AC

OUTGOING

telergon
Switch disconnectors high perfomances range of Telergon for 800 V AC

pronutec
 -6.:

- LV VERTICAL FUSE SWITCHES OF PRONUTEC FOR 800 V AC

TRIVER+ 800
Pronutec introduces the range TRIVER+ 800. A range of vertical fuse switches for photovoltaic application specifically designed for the protection and distribution of electric networks from the new string inverters with rated operational voltage levels of 800 V AC .

The AC distribution and the higher voltage, allow a more cost-competitive design of power networks in photovoltaic applications and less power losses. Another features are the safety of the range TRIVER+ 800 and the breaking capacity at these voltage levels.

Maintaining the well known advantages and features in Pronutec TRIVER+ family, this new range offers additional advantages:

Less power losses

- Tested switching capacity up to 800 V .
- Tested short circuit protection up to 120 kA.
- Reliable protection by a consolidated technology based in DIN standard.
- All operations can be made comfortably using the established protection equipment and insulated tools.
- Compatible with 185 mm and 100 mm distance busbars.
- Available in sizes $\mathrm{NH} 00 / 1 / 3$, allows any combination for a flexible configuration and adaptable to any project.
- Complete range of connections for copper and aluminum terminals for different cable sections.

NH 00 | 100 mm busbar distance

Reference	Type	Current	Fuse-link	Switching	Connections	Busbar spacing
453.61.10.XX.YY.E8	BTVC-DT	125 A	NH 00	Three pole	Top / Bottom reversible	100 mm
* For one pole switching options, please, consult.						

Terminal options

			Cross section (mm^{2})			
XX Code	Type of terminal	Torque (Nm)	80% 08% 08%	\square		
22	Prism terminal - 95	2,5	10-95	10-95	35-95	50-95
01	M8 screw Stainless Steel	12	Cable lugs DIN 46235 Max. $95 \mathrm{~mm}^{2}$			
02	M8 screw Zn	12				
03*	M8-M5 screw Stainless Steel (15 mm)	12				
04**	M8-M5 screw Stainless Steel (18 mm)	12	* Compatible with Prism terminal-70 and Bridge clamp. ** Compatible with Prism terminal-95.			

NH 00 | 185 mm busbar distance

Reference	Type	Current	Fuse-link	Switching	Connections	Busbar spacing
$443.72 .10 . X X . Y Y . E 8$	BTVC-DT / Depth 00	125 A	NH 00	Three pole	Top / Bottom reversible	185 mm
$443.72 .12 . X X . Y Y . E 8$	BTVC-DT / Depth 2	125 A	NH 00	Three pole	Top / Bottom reversible	185 mm

* For one pole switching options, please, consult.

Terminal options

Adaptor plates

YY Code	Adaptor plates
16	Set of 3 adaptor plates to connect $185 \mathrm{~mm}^{2}$ cross section cables

Micro-switch available for all sizes

pronutec

NH 1/3 | 185 mm busbar distance

Reference	Type	Current	Fuse-link	Switching	Connections	Busbar spacing
438.71 .10. XX.YY.E8	BTVC-DT	315 A	NH 1	Three pole	Top / Bottom reversible	185 mm
$438.73 .10 . X X . Y$ Y.E8	BTVC-DT	500 A	NH 3	Three pole	Top / Bottom reversible	185 mm

* For one pole switching options, please, consult.

Terminal options

					Cross s	(mm2)	
Reference	$\begin{gathered} \text { XX } \\ \text { Code } \end{gathered}$	Type of terminal	Torque (Nm)	8i8:			\square
101.01.130	46	Aluminum Double " V "Terminal	25-30	50-240	70-300	70-240	95-300
101.01.129	42	Aluminum Double " V "Terminal	30	35-120	35-150	50-185	35-240
101.01.103	05	Aluminum " V "Terminal with reversible pressure pad	25	16-185	16-240	35-240	35-300
-	00	M10 Bolt	32	$\begin{aligned} & \text { Cable lugs DIN } 46235 \\ & 2 \times 25-300 \mathrm{~mm}^{2} \\ & \text { (Max. width } 43 \mathrm{~mm} \text {) } \end{aligned}$			
-	01	M10 Bolt Stainless Steel	32				
-	02	M12 Bolt	40				
-	03	M12 Bolt Stainless Steel	40				

Cross section up to $300 \mathrm{~mm}^{2}$, the voltage drop is reduced

Micro-switch available for all sizes

Vertical Switch Disconnectors

Size	Current
NH 3	1000 A

Please, consult.

One pole Fuse Bases - 800 V AC

Size	Current
NH 00	
NH 1	Contact our
NH 3	

1 pole LV Fuse Switches - 800 V AC

Size	Current
NH 00	Contact our
NH 1	commercial department

Horizontal design fuse switch disconnector NH 00

Reference	Type	Current	Type of terminal	Connections	Fuse Link	Power Losses $(W))^{*}$
$432.12 .01 .01 .00 . E 8$	Panel mounting	125 A	Bridge terminal	Bottom/Top connection	NH 00	12
$432.12 .01 .02 .00 . \mathrm{E} 8$	Panel mounting	125 A	Connection screw M8	Bottom/Top connection	NH 00	12
$432.42 .01 .01 .00 . \mathrm{E} 8$	Panel mounting	125 A	Bridge terminal	Long Contact Cover	NH 00	12
$432.42 .01 .02 .00 . \mathrm{EB}$	Panel mounting	125 A	Connection screw M8	Long Contact Cover	NH 00	12

Fuse Supervision Control - FSC Modbus

Fuse monitoring unit for 3 phases, compatible with $\mathrm{NHOO}, 1,2$ and 3 fuse switches. One LED per phase shows the status of each fuse with red /green light. FSC sends blown fuse alarms by RS485 modbus protocol to any third party RTU, so that it could
 be integrated into an Scada system.

Measuring instruments - Panel meters

Description	Rated operational voltage U e
Current transformer + Panel meter PNT MASTER 3840	$400 / 500 / 690 \mathrm{~V}$
Current transformer + Panel meter for 800 V AC	800 V

pronutec

	IEC/EN 60947-3	Type	BTVC \| BTVC-DT			
			$\text { NH } 00$ (453)	$\text { NH } 00$ (443)	$\begin{aligned} & \mathrm{NH} 1 \\ & (438) \end{aligned}$	$\text { NH } 3$ (438)
Electrical characteristics	Rated operational voltage	$U_{e}(V)$	AC 800			
	Rated operational current	1 (A$)$	125	125	315	500
	Conventional free air thermal current with fuses	${ }_{\text {th }}(\mathrm{A})$	125		315	500
	Conventional free air thermal current with solid links	$\mathrm{l}_{\text {th }}(\mathrm{A})$	250		760	
	Rated frequency	(Hz)	50/60			
	Rated insulation voltage	$u_{i}(\mathrm{~V})$	1000			
	Rated impulse withstand voltage	$U_{\text {imp }}(\mathrm{kV})$	8		8	
	Rated conditional short-circuit current	${ }^{\left(k A_{\text {eff }}\right)}$	120	120	120	90
	Utilization category	-	AC-22B			
	Rated making capacity	(A)	375	375	1260	1500
	Rated breaking capacity	(A)	375	375	1260	1500
Mechanical characteristics	Weight	(kg)	1,520	2,260	4,250	5,600
	Busbar distance	(mm)	100		185	
	Panel front opening	(mm)	600/650			
Fuse links	Size to IEC/EN 60269	-	00	00	1	3
	Max. permis. power loss per fuse-link	$P_{v}(W)$	12	12	23	48

IEC/EN 60947			Type	BTVC \| BTVC-DT				
			NH00	NH 00	NH 1	NH3		
Terminals	Bolt terminal	Diameter		-	M8		M10/M12	
		Cable lug (S/DIN 46235)	$\left(\mathrm{mm}^{2}\right)$	10-95	10-120	$\begin{gathered} 2 x \\ 25-300 \end{gathered}$	$\begin{gathered} 2 x \\ 25-300 \end{gathered}$	
		Torque	(Nm)					
		Terminal cross section	$\left(\mathrm{mm}^{2}\right)$					
		Torque	(Nm)					
	"V"Terminal	Terminal cross section	$\left(\mathrm{mm}^{2}\right)$		10-95	35-300	35-300	
		Torque	(Nm)	-	15	25	25	
Protection degree	Front operated switchgear fitted		-	P30				
Operating conditions	Ambient ten	merature	(${ }^{\circ}$)		-25	55*(1)		
	Rated operat	ing mode	-		Contino	peration		
	Actuation		-		endant	ual operation		
	Altitude		(m)					
	Pollution deg	gree	-					
	Overvoltage	category	-					

[^0]
- SIBA NH FUSES

Pronutec recommends SIBA NH fuses for optimal protection of the new generation of PV String Inverters

The new series of SIBA NH fuses with operating class: gRL (gS) has been developed for the line protection of the new String Inverters.

Due to the use of special geometries of melting elements, in comparison to the conventional line protection fuses of operating class: gG , a considerably faster operation at short circuits and thus optimum protection of the inverters has been realized. In the spacesaving NH standard designs, the fuse links achieve a maximum breaking capacity of 120 kA with a test voltage of 800 V . The power losses of series NH 000/00/1/2/3 have been designed for the respective maximum power acceptance of the corresponding NH fuse bases and fuse switches.

	Fuse links $-\mathbf{8 0 0} \mathrm{V} \mathrm{AC} \mid \mathrm{gG}$
Size	Current
NH 000	from 6 to 16 A
NH 00	from 20 to 63 A
NH 1	from 50 to 160 A
NH 2	from 160 to 200 A

Operation class gG		
Size Reference	Rated Current (A)	Power loss (W)
$\begin{aligned} & \text { NH } 000 \\ & 2030813 \end{aligned}$	6	2
	10	2,5
	16	4
$\begin{gathered} \text { NH } 00 \\ 2030913 \end{gathered}$	20	2,5
	25	3,0
	32	4
	40	4,5
	50	5,0
	63	6,5
$\begin{gathered} \text { NH } 1 \\ 2031113 \end{gathered}$	50	5,0
	63	6,5
	80	7,5
	100	9,0
	125	10
	160	13
$\begin{gathered} \mathrm{NH} 2 \\ 2031213 \end{gathered}$	160	13
	200	20
$\begin{gathered} \text { NH } 3 \\ 2031313 \end{gathered}$	160	13
	200	18
	250	20

[^1]

Sicherungen|Fuses

	Fuse links -800 V AC \mid gRL (gS)
Size	Current
NH 00	from 32 to 125 A
NH 1	from 80 to 200 A
NH 2	from 125 to 250 A
NH 3	from 200 to 400 A

Operation class gRL (gS)		
Size Reference	Rated Current (A)	Power loss (W)
$\begin{gathered} \text { NH } 00 \\ 2030934 \end{gathered}$	32	5
	35	6
	40	7
	50	8
	63	10
	80	11
	100	12
	125	13
$\begin{gathered} \text { NH } 1 \\ 2031134 \end{gathered}$	80	13
	100	15
	125	18
	160	19
	180	20
	200	21
$\begin{gathered} \text { NH } 2 \\ 2031234 \end{gathered}$	125	18
	160	19
	200	21
	250	26
$\begin{gathered} \text { NH } 3 \\ 2031334 \end{gathered}$	200	-
	250	26
	315	31
	350	35
	400	41

telergon
 - 0°

SWITCH DISCONNECTORS HIGH PERFORMANCES RANGE OF TELERGON FOR 800 VAC

Functional and ergonomic handle

- Good grip and excellent torque/resistance.
- Padlockable handle in O OFF position (up to three locks $\emptyset_{5-8 \mathrm{~mm})}^{\square}$.
- Door interlock in ON I position.
- When lock in O OFF position, door is interlocked.
- Defeteable feature in ON I position (with the use of a tool for maintenance operations). Handle interlock is restored when closing.
- Self-centering shaft for door handle.

The switch-disconnectors $\mathbf{S 5}$ \& $\mathbf{5 6}$ for high perfomances range, are manufactured with high safety selfextinguishing materials, providing an excellent level of electrical insulation, low smoke emission and high resistance to electromechanical stress.

They comply with environmental requirements and undergo strict quality controls for a reliable product that meets the most demanding requirements.
They consist of a sandwich-type body containing selfcleaning blade type contacts, with pre-arc zones to ensure long term, fault-free energy transmission and coated with silver alloy for long electromechanical life. The detent mechanism provides quick and independent switching due to the accumulation of elastic potential energy, which is transmitted at high speed to the contacts for arc extinction.

Motorized unit kit

- Equipped with a selector for automatic-manual-lock operating modes.
- The kit concept simplifies both logistics and maintenance.
- Easy and simple assembly.

telergon

According to:

[^2]AUTOMATIC SWITCH DISCONNECTORS

ACB 332S 4P-85 kA

Code	Description	Type	Rated operational voltage U	Current
1012786	MCCB E630NE 4P FC	MCCB 3P+N Type TB2 Moulded case	400/500/690V	630 A
1012791	MCCB S800CJ 4P FC	MCCB 3P+N Type TB2 Moulded case		800 A
10127100	MCCB S1000SE 4P FC	MCCB 3P+NType TB2 CMoulded case		1000 A
1012775	MCCB S1250SE 4P FC	MCCB 3P+NType TB2 Moulded case		1250 A
1012782	MCCB S1600SE 4P FC	MCCB 3P+NType TB2 Moulded case		1600 A
Confirm	ACB 220S 4P-65 kA	ACB 4P Fixed type		2000 A
Confirm	ACB 325S 4P-85 kA	ACB 4P Fixed type		2500 A
Confirm	ACB 332S 4P-85 kA	ACB 4P Fixed type		3200 A
Confirm	MCCB XV250NE 3P FC 800Vac	MCCB 3P Type XV Moulded case	800 V	250 A
Confirm	MCCB XV400NE 3P FC 800Vac	MCCB 3P Type XV Moulded case		400 A
Confirm	MCCB XV630PE 3P FC 800Vac	MCCB 3PType XV Moulded case		630 A
Confirm	MCCB XV800PE 3P FC 800Vac	MCCB 3PType XV Moulded case		800 A
Confirm	MCCB XV1250NE 3P FC 800Vac	MCCB 3P Type XV Moulded case		1250 A
Confirm	ACB 320H-V8 3P 800Vac - 30 kA	ACB 3P ARV8 Withdrawable type		2000 A
Confirm	ACB 325H-V8 3P 800Vac - 30 kA	ACB 3P ARV8 Withdrawable type		2500 A
Confirm	ACB 332H-V8 3P 800Vac - 30 kA	ACB 3P AR V8 Withdrawable type		3200 A
Confirm	AR440SB-V8800Vac - 50kA	ACB 3P AR V8 Withdrawable type		2000 A
Confirm	AR440SB-V8800Vac - 50kA	ACB 3P AR V8 Withdrawable type		2500 A
Confirm	AR440SB-V8 800Vac - 50kA	ACB 3P AR V8 Withdrawable type		3200 A
Confirm	AR440SB-V8800Vac - 50kA	ACB 3P AR V8 Withdrawable type		3600 A

\qquad

[^0]: ${ }^{*(1)} 35^{\circ} \mathrm{C}$ normal temperature, at $55^{\circ} \mathrm{C}$ with reduced operating current.

[^1]: More info at:
 www.pronutec.com

[^2]: *(1) This terminal shround is only available for switch disconnectors S5-18003PSO.

